Close Menu
    Facebook X (Twitter) Instagram
    Articles Stock
    • Home
    • Technology
    • AI
    • Pages
      • About us
      • Contact us
      • Disclaimer For Articles Stock
      • Privacy Policy
      • Terms and Conditions
    Facebook X (Twitter) Instagram
    Articles Stock
    AI

    The best way to Design Advanced Deep Studying Tensor Pipelines Utilizing Einops with Imaginative and prescient, Consideration, and Multimodal Examples

    Naveed AhmadBy Naveed Ahmad11/02/2026Updated:11/02/2026No Comments2 Mins Read
    blog banner23 1 9


    part("6) pack unpack")
    B, Cemb = 2, 128
    
    
    class_token = torch.randn(B, 1, Cemb, machine=machine)
    image_tokens = torch.randn(B, 196, Cemb, machine=machine)
    text_tokens = torch.randn(B, 32, Cemb, machine=machine)
    show_shape("class_token", class_token)
    show_shape("image_tokens", image_tokens)
    show_shape("text_tokens", text_tokens)
    
    
    packed, ps = pack([class_token, image_tokens, text_tokens], "b * c")
    show_shape("packed", packed)
    print("packed_shapes (ps):", ps)
    
    
    mixer = nn.Sequential(
       nn.LayerNorm(Cemb),
       nn.Linear(Cemb, 4 * Cemb),
       nn.GELU(),
       nn.Linear(4 * Cemb, Cemb),
    ).to(machine)
    
    
    blended = mixer(packed)
    show_shape("blended", blended)
    
    
    class_out, image_out, text_out = unpack(blended, ps, "b * c")
    show_shape("class_out", class_out)
    show_shape("image_out", image_out)
    show_shape("text_out", text_out)
    assert class_out.form == class_token.form
    assert image_out.form == image_tokens.form
    assert text_out.form == text_tokens.form
    
    
    part("7) layers")
    class PatchEmbed(nn.Module):
       def __init__(self, in_channels=3, emb_dim=192, patch=8):
           tremendous().__init__()
           self.patch = patch
           self.to_patches = Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=patch, p2=patch)
           self.proj = nn.Linear(in_channels * patch * patch, emb_dim)
    
    
       def ahead(self, x):
           x = self.to_patches(x)
           return self.proj(x)
    
    
    class SimpleVisionHead(nn.Module):
       def __init__(self, emb_dim=192, num_classes=10):
           tremendous().__init__()
           self.pool = Scale back("b t c -> b c", discount="imply")
           self.classifier = nn.Linear(emb_dim, num_classes)
    
    
       def ahead(self, tokens):
           x = self.pool(tokens)
           return self.classifier(x)
    
    
    patch_embed = PatchEmbed(in_channels=3, emb_dim=192, patch=8).to(machine)
    head = SimpleVisionHead(emb_dim=192, num_classes=10).to(machine)
    
    
    imgs = torch.randn(4, 3, 32, 32, machine=machine)
    tokens = patch_embed(imgs)
    logits = head(tokens)
    show_shape("tokens", tokens)
    show_shape("logits", logits)
    
    
    part("8) sensible")
    x = torch.randn(2, 32, 16, 16, machine=machine)
    g = 8
    xg = rearrange(x, "b (g cg) h w -> (b g) cg h w", g=g)
    show_shape("x", x)
    show_shape("xg", xg)
    
    
    imply = cut back(xg, "bg cg h w -> bg 1 1 1", "imply")
    var = cut back((xg - imply) ** 2, "bg cg h w -> bg 1 1 1", "imply")
    xg_norm = (xg - imply) / torch.sqrt(var + 1e-5)
    x_norm = rearrange(xg_norm, "(b g) cg h w -> b (g cg) h w", b=2, g=g)
    show_shape("x_norm", x_norm)
    
    
    z = torch.randn(3, 64, 20, 30, machine=machine)
    z_flat = rearrange(z, "b c h w -> b c (h w)")
    z_unflat = rearrange(z_flat, "b c (h w) -> b c h w", h=20, w=30)
    assert (z - z_unflat).abs().max().merchandise() < 1e-6
    show_shape("z_flat", z_flat)
    
    
    part("9) views")
    a = torch.randn(2, 3, 4, 5, machine=machine)
    b = rearrange(a, "b c h w -> b h w c")
    print("a.is_contiguous():", a.is_contiguous())
    print("b.is_contiguous():", b.is_contiguous())
    print("b._base is a:", getattr(b, "_base", None) is a)
    
    
    part("Executed ✅ You now have reusable einops patterns for imaginative and prescient, consideration, and multimodal token packing")



    Source link

    Naveed Ahmad

    Related Posts

    Google AI Introduces Natively Adaptive Interfaces (NAI): An Agentic Multimodal Accessibility Framework Constructed on Gemini for Adaptive UI Design

    11/02/2026

    Amazon could launch a market the place media websites can promote their content material to AI corporations

    11/02/2026

    EC-Council Launches New AI Certifications To Shut The Expertise Hole

    11/02/2026
    Leave A Reply Cancel Reply

    Categories
    • AI
    Recent Comments
      Facebook X (Twitter) Instagram Pinterest
      © 2026 ThemeSphere. Designed by ThemeSphere.

      Type above and press Enter to search. Press Esc to cancel.