Close Menu
    Facebook X (Twitter) Instagram
    Articles Stock
    • Home
    • Technology
    • AI
    • Pages
      • About us
      • Contact us
      • Disclaimer For Articles Stock
      • Privacy Policy
      • Terms and Conditions
    Facebook X (Twitter) Instagram
    Articles Stock
    AI

    Methods to Align Giant Language Fashions with Human Preferences Utilizing Direct Desire Optimization, QLoRA, and Extremely-Suggestions

    Naveed AhmadBy Naveed Ahmad13/02/2026Updated:13/02/2026No Comments6 Mins Read
    blog banner23 1 14


    On this tutorial, we implement an end-to-end Direct Desire Optimization workflow to align a big language mannequin with human preferences with out utilizing a reward mannequin. We mix TRL’s DPOTrainer with QLoRA and PEFT to make preference-based alignment possible on a single Colab GPU. We prepare instantly on the UltraFeedback binarized dataset, the place every immediate has a selected and a rejected response, permitting us to form mannequin habits and elegance moderately than simply factual recall.

    import os
    import math
    import random
    import torch
    
    
    !pip -q set up -U "transformers>=4.45.0" "datasets>=2.19.0" "speed up>=0.33.0" "trl>=0.27.0" "peft>=0.12.0" "bitsandbytes>=0.43.0" "sentencepiece" "consider"
    
    
    SEED = 42
    random.seed(SEED)
    torch.manual_seed(SEED)
    torch.cuda.manual_seed_all(SEED)
    
    
    MODEL_NAME = os.environ.get("MODEL_NAME", "Qwen/Qwen2-0.5B-Instruct")
    DATASET_NAME = "HuggingFaceH4/ultrafeedback_binarized"
    OUTPUT_DIR = "dpo_ultrafeedback_qlora"
    
    
    MAX_TRAIN_SAMPLES = 8000
    MAX_EVAL_SAMPLES  = 200
    MAX_PROMPT_LEN = 512
    MAX_COMPLETION_LEN = 256
    
    
    BETA = 0.1
    LR = 2e-4
    EPOCHS = 1
    PER_DEVICE_BS = 2
    GRAD_ACCUM = 8
    
    
    LOGGING_STEPS = 10
    SAVE_STEPS = 200
    
    
    machine = "cuda" if torch.cuda.is_available() else "cpu"
    print("Machine:", machine, "GPU:", torch.cuda.get_device_name(0) if machine == "cuda" else "None")

    We arrange the execution surroundings and set up all required libraries for DPO, PEFT, and quantized coaching. We outline all world hyperparameters, dataset limits, and optimization settings in a single place. We additionally initialize the random quantity generator and ensure GPU availability to make sure reproducible runs.

    from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
    
    
    bnb_config = BitsAndBytesConfig(
       load_in_4bit=True,
       bnb_4bit_quant_type="nf4",
       bnb_4bit_use_double_quant=True,
       bnb_4bit_compute_dtype=torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability(0)[0] >= 8 else torch.float16,
    )
    
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
    if tokenizer.pad_token is None:
       tokenizer.pad_token = tokenizer.eos_token
    
    
    mannequin = AutoModelForCausalLM.from_pretrained(
       MODEL_NAME,
       quantization_config=bnb_config,
       torch_dtype=torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability(0)[0] >= 8 else torch.float16,
       device_map="auto",
    )
    mannequin.config.use_cache = False

    We load the tokenizer and the bottom language mannequin utilizing 4-bit quantization to reduce reminiscence utilization. We configure bitsandbytes to allow environment friendly QLoRA-style computation on Colab GPUs. We put together the mannequin for coaching by disabling cache utilization to keep away from incompatibilities throughout backpropagation.

    from peft import LoraConfig, get_peft_model
    
    
    lora_config = LoraConfig(
       r=16,
       lora_alpha=32,
       lora_dropout=0.05,
       bias="none",
       task_type="CAUSAL_LM",
       target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"],
    )
    
    
    mannequin = get_peft_model(mannequin, lora_config)
    mannequin.print_trainable_parameters()
    
    
    mannequin.gradient_checkpointing_enable()

    We connect LoRA adapters to the mannequin’s consideration and feed-forward projection layers. We prohibit coaching to a small set of parameters to make fine-tuning environment friendly and steady. We allow gradient checkpointing to additional cut back GPU reminiscence consumption throughout coaching.

    from datasets import load_dataset
    
    
    ds = load_dataset(DATASET_NAME)
    
    
    train_split = "train_prefs" if "train_prefs" in ds else ("prepare" if "prepare" in ds else listing(ds.keys())[0])
    test_split  = "test_prefs" if "test_prefs" in ds else ("check" if "check" in ds else None)
    
    
    train_raw = ds[train_split]
    test_raw = ds[test_split] if test_split will not be None else None
    
    
    print("Splits:", ds.keys())
    print("Utilizing prepare cut up:", train_split, "dimension:", len(train_raw))
    if test_raw will not be None:
       print("Utilizing check cut up:", test_split, "dimension:", len(test_raw))
    
    
    def _extract_last_user_and_assistant(messages):
       last_user_idx = None
       last_asst_idx = None
       for i, m in enumerate(messages):
           if m.get("position") == "consumer":
               last_user_idx = i
           if m.get("position") == "assistant":
               last_asst_idx = i
    
    
       if last_user_idx is None or last_asst_idx is None:
           return None, None
    
    
       prompt_messages = messages[: last_user_idx + 1]
       assistant_text = messages[last_asst_idx].get("content material", "")
       return prompt_messages, assistant_text
    
    
    def format_example(ex):
       chosen_msgs = ex["chosen"]
       rejected_msgs = ex["rejected"]
    
    
       prompt_msgs_c, chosen_text = _extract_last_user_and_assistant(chosen_msgs)
       prompt_msgs_r, rejected_text = _extract_last_user_and_assistant(rejected_msgs)
    
    
       if prompt_msgs_c is None or prompt_msgs_r is None:
           return {"immediate": None, "chosen": None, "rejected": None}
    
    
       prompt_text = tokenizer.apply_chat_template(
           prompt_msgs_c, tokenize=False, add_generation_prompt=True
       )
    
    
       return {
           "immediate": prompt_text,
           "chosen": chosen_text.strip(),
           "rejected": rejected_text.strip(),
       }
    
    
    train_raw = train_raw.shuffle(seed=SEED)
    train_raw = train_raw.choose(vary(min(MAX_TRAIN_SAMPLES, len(train_raw))))
    
    
    train_ds = train_raw.map(format_example, remove_columns=train_raw.column_names)
    train_ds = train_ds.filter(lambda x: x["prompt"] will not be None and len(x["chosen"]) > 0 and len(x["rejected"]) > 0)
    
    
    if test_raw will not be None:
       test_raw = test_raw.shuffle(seed=SEED)
       test_raw = test_raw.choose(vary(min(MAX_EVAL_SAMPLES, len(test_raw))))
       eval_ds = test_raw.map(format_example, remove_columns=test_raw.column_names)
       eval_ds = eval_ds.filter(lambda x: x["prompt"] will not be None and len(x["chosen"]) > 0 and len(x["rejected"]) > 0)
    else:
       eval_ds = None
    
    
    print("Practice examples:", len(train_ds), "Eval examples:", len(eval_ds) if eval_ds will not be None else 0)
    print(train_ds[0])

    We load the UltraFeedback binarized dataset and dynamically choose the suitable prepare and check splits. We extract immediate, chosen, and rejected responses from multi-turn conversations and format them utilizing the mannequin’s chat template. We shuffle, filter, and subsample the information to create clear and environment friendly coaching and analysis datasets.

    from trl import DPOTrainer, DPOConfig
    
    
    use_bf16 = torch.cuda.is_available() and torch.cuda.get_device_capability(0)[0] >= 8
    use_fp16 = torch.cuda.is_available() and never use_bf16
    
    
    training_args = DPOConfig(
       output_dir=OUTPUT_DIR,
       beta=BETA,
       per_device_train_batch_size=PER_DEVICE_BS,
       gradient_accumulation_steps=GRAD_ACCUM,
       num_train_epochs=EPOCHS,
       learning_rate=LR,
       lr_scheduler_type="cosine",
       warmup_ratio=0.05,
       logging_steps=LOGGING_STEPS,
       save_steps=SAVE_STEPS,
       save_total_limit=2,
       bf16=use_bf16,
       fp16=use_fp16,
       optim="paged_adamw_8bit",
       max_length=MAX_PROMPT_LEN + MAX_COMPLETION_LEN,
       max_prompt_length=MAX_PROMPT_LEN,
       report_to="none",
    )
    
    
    coach = DPOTrainer(
       mannequin=mannequin,
       args=training_args,
       processing_class=tokenizer,
       train_dataset=train_ds,
       eval_dataset=eval_ds,
    )
    
    
    coach.prepare()
    
    
    coach.save_model(OUTPUT_DIR)
    tokenizer.save_pretrained(OUTPUT_DIR)
    
    
    print("Saved to:", OUTPUT_DIR)

    We configure the DPO coaching goal with rigorously chosen optimization and scheduling parameters. We initialize the DPOTrainer to instantly optimize desire pairs with out a reward mannequin. We prepare the LoRA adapters and save the aligned mannequin artifacts for later inference.

    from peft import PeftModel
    from transformers import pipeline
    
    
    def generate_text(model_for_gen, immediate, max_new_tokens=180):
       model_for_gen.eval()
       inputs = tokenizer(immediate, return_tensors="pt", truncation=True, max_length=MAX_PROMPT_LEN).to(model_for_gen.machine)
       with torch.no_grad():
           out = model_for_gen.generate(
               **inputs,
               max_new_tokens=max_new_tokens,
               do_sample=True,
               temperature=0.7,
               top_p=0.95,
               pad_token_id=tokenizer.eos_token_id,
           )
       return tokenizer.decode(out[0], skip_special_tokens=True)
    
    
    base_model = AutoModelForCausalLM.from_pretrained(
       MODEL_NAME,
       quantization_config=bnb_config,
       torch_dtype=torch.bfloat16 if use_bf16 else torch.float16,
       device_map="auto",
    )
    base_model.config.use_cache = True
    
    
    dpo_model = PeftModel.from_pretrained(base_model, OUTPUT_DIR)
    dpo_model.config.use_cache = True
    
    
    sample_pool = eval_ds if eval_ds will not be None and len(eval_ds) > 0 else train_ds
    samples = [sample_pool[i] for i in random.pattern(vary(len(sample_pool)), okay=min(3, len(sample_pool)))]
    
    
    for i, ex in enumerate(samples, 1):
       immediate = ex["prompt"]
       print("n" + "="*90)
       print(f"Pattern #{i}")
       print("- Immediate:n", immediate)
    
    
       base_out = generate_text(base_model, immediate)
       dpo_out  = generate_text(dpo_model, immediate)
    
    
       print("n- Base mannequin output:n", base_out)
       print("n- DPO (LoRA) output:n", dpo_out)
    
    
    print("nDone.")

    We reload the bottom mannequin and fix the educated DPO LoRA adapters for inference. We generate responses from each the unique and aligned fashions utilizing the identical prompts for comparability. We qualitatively consider how desire optimization adjustments mannequin habits by inspecting the outputs aspect by aspect.

    In conclusion, we demonstrated how DPO gives a steady and environment friendly various to RLHF by instantly optimizing desire pairs with a easy, well-defined goal. We confirmed that parameter-efficient fine-tuning with LoRA and 4-bit quantization permits sensible experimentation even underneath tight compute constraints. We qualitatively validated alignment by evaluating generations earlier than and after DPO coaching, confirming that the mannequin learns to favor higher-quality responses whereas remaining light-weight and deployable.


    Try the FULL CODES here. Additionally, be at liberty to observe us on Twitter and don’t neglect to hitch our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.




    Source link

    Naveed Ahmad

    Related Posts

    Google DeepMind Introduces Aletheia: The AI Agent Transferring from Math Competitions to Totally Autonomous Skilled Analysis Discoveries

    13/02/2026

    Waymo is asking DoorDash drivers to close the doorways of its self-driving automobiles

    13/02/2026

    IBM will rent your entry-level expertise within the age of AI

    13/02/2026
    Leave A Reply Cancel Reply

    Categories
    • AI
    Recent Comments
      Facebook X (Twitter) Instagram Pinterest
      © 2026 ThemeSphere. Designed by ThemeSphere.

      Type above and press Enter to search. Press Esc to cancel.