On this tutorial, we implement an end-to-end Direct Desire Optimization workflow to align a big language mannequin with human preferences with out utilizing a reward mannequin. We mix TRL’s DPOTrainer with QLoRA and PEFT to make preference-based alignment possible on a single Colab GPU. We prepare instantly on the UltraFeedback binarized dataset, the place every immediate has a selected and a rejected response, permitting us to form mannequin habits and elegance moderately than simply factual recall.
import os
import math
import random
import torch
!pip -q set up -U "transformers>=4.45.0" "datasets>=2.19.0" "speed up>=0.33.0" "trl>=0.27.0" "peft>=0.12.0" "bitsandbytes>=0.43.0" "sentencepiece" "consider"
SEED = 42
random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
MODEL_NAME = os.environ.get("MODEL_NAME", "Qwen/Qwen2-0.5B-Instruct")
DATASET_NAME = "HuggingFaceH4/ultrafeedback_binarized"
OUTPUT_DIR = "dpo_ultrafeedback_qlora"
MAX_TRAIN_SAMPLES = 8000
MAX_EVAL_SAMPLES = 200
MAX_PROMPT_LEN = 512
MAX_COMPLETION_LEN = 256
BETA = 0.1
LR = 2e-4
EPOCHS = 1
PER_DEVICE_BS = 2
GRAD_ACCUM = 8
LOGGING_STEPS = 10
SAVE_STEPS = 200
machine = "cuda" if torch.cuda.is_available() else "cpu"
print("Machine:", machine, "GPU:", torch.cuda.get_device_name(0) if machine == "cuda" else "None")
We arrange the execution surroundings and set up all required libraries for DPO, PEFT, and quantized coaching. We outline all world hyperparameters, dataset limits, and optimization settings in a single place. We additionally initialize the random quantity generator and ensure GPU availability to make sure reproducible runs.
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability(0)[0] >= 8 else torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
mannequin = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability(0)[0] >= 8 else torch.float16,
device_map="auto",
)
mannequin.config.use_cache = False
We load the tokenizer and the bottom language mannequin utilizing 4-bit quantization to reduce reminiscence utilization. We configure bitsandbytes to allow environment friendly QLoRA-style computation on Colab GPUs. We put together the mannequin for coaching by disabling cache utilization to keep away from incompatibilities throughout backpropagation.
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"],
)
mannequin = get_peft_model(mannequin, lora_config)
mannequin.print_trainable_parameters()
mannequin.gradient_checkpointing_enable()
We connect LoRA adapters to the mannequin’s consideration and feed-forward projection layers. We prohibit coaching to a small set of parameters to make fine-tuning environment friendly and steady. We allow gradient checkpointing to additional cut back GPU reminiscence consumption throughout coaching.
from datasets import load_dataset
ds = load_dataset(DATASET_NAME)
train_split = "train_prefs" if "train_prefs" in ds else ("prepare" if "prepare" in ds else listing(ds.keys())[0])
test_split = "test_prefs" if "test_prefs" in ds else ("check" if "check" in ds else None)
train_raw = ds[train_split]
test_raw = ds[test_split] if test_split will not be None else None
print("Splits:", ds.keys())
print("Utilizing prepare cut up:", train_split, "dimension:", len(train_raw))
if test_raw will not be None:
print("Utilizing check cut up:", test_split, "dimension:", len(test_raw))
def _extract_last_user_and_assistant(messages):
last_user_idx = None
last_asst_idx = None
for i, m in enumerate(messages):
if m.get("position") == "consumer":
last_user_idx = i
if m.get("position") == "assistant":
last_asst_idx = i
if last_user_idx is None or last_asst_idx is None:
return None, None
prompt_messages = messages[: last_user_idx + 1]
assistant_text = messages[last_asst_idx].get("content material", "")
return prompt_messages, assistant_text
def format_example(ex):
chosen_msgs = ex["chosen"]
rejected_msgs = ex["rejected"]
prompt_msgs_c, chosen_text = _extract_last_user_and_assistant(chosen_msgs)
prompt_msgs_r, rejected_text = _extract_last_user_and_assistant(rejected_msgs)
if prompt_msgs_c is None or prompt_msgs_r is None:
return {"immediate": None, "chosen": None, "rejected": None}
prompt_text = tokenizer.apply_chat_template(
prompt_msgs_c, tokenize=False, add_generation_prompt=True
)
return {
"immediate": prompt_text,
"chosen": chosen_text.strip(),
"rejected": rejected_text.strip(),
}
train_raw = train_raw.shuffle(seed=SEED)
train_raw = train_raw.choose(vary(min(MAX_TRAIN_SAMPLES, len(train_raw))))
train_ds = train_raw.map(format_example, remove_columns=train_raw.column_names)
train_ds = train_ds.filter(lambda x: x["prompt"] will not be None and len(x["chosen"]) > 0 and len(x["rejected"]) > 0)
if test_raw will not be None:
test_raw = test_raw.shuffle(seed=SEED)
test_raw = test_raw.choose(vary(min(MAX_EVAL_SAMPLES, len(test_raw))))
eval_ds = test_raw.map(format_example, remove_columns=test_raw.column_names)
eval_ds = eval_ds.filter(lambda x: x["prompt"] will not be None and len(x["chosen"]) > 0 and len(x["rejected"]) > 0)
else:
eval_ds = None
print("Practice examples:", len(train_ds), "Eval examples:", len(eval_ds) if eval_ds will not be None else 0)
print(train_ds[0])
We load the UltraFeedback binarized dataset and dynamically choose the suitable prepare and check splits. We extract immediate, chosen, and rejected responses from multi-turn conversations and format them utilizing the mannequin’s chat template. We shuffle, filter, and subsample the information to create clear and environment friendly coaching and analysis datasets.
from trl import DPOTrainer, DPOConfig
use_bf16 = torch.cuda.is_available() and torch.cuda.get_device_capability(0)[0] >= 8
use_fp16 = torch.cuda.is_available() and never use_bf16
training_args = DPOConfig(
output_dir=OUTPUT_DIR,
beta=BETA,
per_device_train_batch_size=PER_DEVICE_BS,
gradient_accumulation_steps=GRAD_ACCUM,
num_train_epochs=EPOCHS,
learning_rate=LR,
lr_scheduler_type="cosine",
warmup_ratio=0.05,
logging_steps=LOGGING_STEPS,
save_steps=SAVE_STEPS,
save_total_limit=2,
bf16=use_bf16,
fp16=use_fp16,
optim="paged_adamw_8bit",
max_length=MAX_PROMPT_LEN + MAX_COMPLETION_LEN,
max_prompt_length=MAX_PROMPT_LEN,
report_to="none",
)
coach = DPOTrainer(
mannequin=mannequin,
args=training_args,
processing_class=tokenizer,
train_dataset=train_ds,
eval_dataset=eval_ds,
)
coach.prepare()
coach.save_model(OUTPUT_DIR)
tokenizer.save_pretrained(OUTPUT_DIR)
print("Saved to:", OUTPUT_DIR)
We configure the DPO coaching goal with rigorously chosen optimization and scheduling parameters. We initialize the DPOTrainer to instantly optimize desire pairs with out a reward mannequin. We prepare the LoRA adapters and save the aligned mannequin artifacts for later inference.
from peft import PeftModel
from transformers import pipeline
def generate_text(model_for_gen, immediate, max_new_tokens=180):
model_for_gen.eval()
inputs = tokenizer(immediate, return_tensors="pt", truncation=True, max_length=MAX_PROMPT_LEN).to(model_for_gen.machine)
with torch.no_grad():
out = model_for_gen.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.7,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id,
)
return tokenizer.decode(out[0], skip_special_tokens=True)
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
torch_dtype=torch.bfloat16 if use_bf16 else torch.float16,
device_map="auto",
)
base_model.config.use_cache = True
dpo_model = PeftModel.from_pretrained(base_model, OUTPUT_DIR)
dpo_model.config.use_cache = True
sample_pool = eval_ds if eval_ds will not be None and len(eval_ds) > 0 else train_ds
samples = [sample_pool[i] for i in random.pattern(vary(len(sample_pool)), okay=min(3, len(sample_pool)))]
for i, ex in enumerate(samples, 1):
immediate = ex["prompt"]
print("n" + "="*90)
print(f"Pattern #{i}")
print("- Immediate:n", immediate)
base_out = generate_text(base_model, immediate)
dpo_out = generate_text(dpo_model, immediate)
print("n- Base mannequin output:n", base_out)
print("n- DPO (LoRA) output:n", dpo_out)
print("nDone.")
We reload the bottom mannequin and fix the educated DPO LoRA adapters for inference. We generate responses from each the unique and aligned fashions utilizing the identical prompts for comparability. We qualitatively consider how desire optimization adjustments mannequin habits by inspecting the outputs aspect by aspect.
In conclusion, we demonstrated how DPO gives a steady and environment friendly various to RLHF by instantly optimizing desire pairs with a easy, well-defined goal. We confirmed that parameter-efficient fine-tuning with LoRA and 4-bit quantization permits sensible experimentation even underneath tight compute constraints. We qualitatively validated alignment by evaluating generations earlier than and after DPO coaching, confirming that the mannequin learns to favor higher-quality responses whereas remaining light-weight and deployable.
Try the FULL CODES here. Additionally, be at liberty to observe us on Twitter and don’t neglect to hitch our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.
