On this tutorial, we reveal the way to transfer past static, code-heavy charts and construct a genuinely interactive exploratory knowledge evaluation workflow straight utilizing PyGWalker. We begin by making ready the Titanic dataset for large-scale interactive querying. These analysis-ready engineered options reveal the underlying construction of the information whereas enabling each detailed row-level exploration and high-level aggregated views for deeper perception. Embedding a Tableau-style drag-and-drop interface straight within the pocket book permits speedy speculation testing, intuitive cohort comparisons, and environment friendly data-quality inspection, all with out the friction of switching between code and visualization instruments.
import sys, subprocess, json, math, os
from pathlib import Path
def pip_install(pkgs):
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q"] + pkgs)
pip_install([
"pygwalker>=0.4.9",
"duckdb>=0.10.0",
"pandas>=2.0.0",
"numpy>=1.24.0",
"seaborn>=0.13.0"
])
import numpy as np
import pandas as pd
import seaborn as sns
df_raw = sns.load_dataset("titanic").copy()
print("Uncooked form:", df_raw.form)
show(df_raw.head(3))
We arrange a clear and reproducible Colab atmosphere by putting in all required dependencies for interactive EDA. We load the Titanic dataset and carry out an preliminary sanity test to grasp its uncooked construction and scale. It establishes a secure basis earlier than any transformation or visualization begins.
def make_safe_bucket(collection, bins=None, labels=None, q=None, prefix="bucket"):
s = pd.to_numeric(collection, errors="coerce")
if q is just not None:
attempt:
cuts = pd.qcut(s, q=q, duplicates="drop")
return cuts.astype("string").fillna("Unknown")
besides Exception:
move
if bins is just not None:
cuts = pd.lower(s, bins=bins, labels=labels, include_lowest=True)
return cuts.astype("string").fillna("Unknown")
return s.astype("float64")
def preprocess_titanic_advanced(df):
out = df.copy()
out.columns = [c.strip().lower().replace(" ", "_") for c in out.columns]
for c in ["survived", "pclass", "sibsp", "parch"]:
if c in out.columns:
out[c] = pd.to_numeric(out[c], errors="coerce").fillna(-1).astype("int64")
if "age" in out.columns:
out["age"] = pd.to_numeric(out["age"], errors="coerce").astype("float64")
out["age_is_missing"] = out["age"].isna()
out["age_bucket"] = make_safe_bucket(
out["age"],
bins=[0, 12, 18, 30, 45, 60, 120],
labels=["child", "teen", "young_adult", "adult", "mid_age", "senior"],
)
if "fare" in out.columns:
out["fare"] = pd.to_numeric(out["fare"], errors="coerce").astype("float64")
out["fare_is_missing"] = out["fare"].isna()
out["log_fare"] = np.log1p(out["fare"].fillna(0))
out["fare_bucket"] = make_safe_bucket(out["fare"], q=8)
for c in ["sex", "class", "who", "embarked", "alone", "adult_male"]:
if c in out.columns:
out[c] = out[c].astype("string").fillna("Unknown")
if "cabin" in out.columns:
out["deck"] = out["cabin"].astype("string").str.strip().str[0].fillna("Unknown")
out["deck_is_missing"] = out["cabin"].isna()
else:
out["deck"] = "Unknown"
out["deck_is_missing"] = True
if "ticket" in out.columns:
t = out["ticket"].astype("string")
out["ticket_len"] = t.str.len().fillna(0).astype("int64")
out["ticket_has_alpha"] = t.str.comprises(r"[A-Za-z]", regex=True, na=False)
out["ticket_prefix"] = t.str.extract(r"^([A-Za-z./s]+)", broaden=False).fillna("None").str.strip()
out["ticket_prefix"] = out["ticket_prefix"].substitute("", "None").astype("string")
if "sibsp" in out.columns and "parch" in out.columns:
out["family_size"] = (out["sibsp"] + out["parch"] + 1).astype("int64")
out["is_alone"] = (out["family_size"] == 1)
if "title" in out.columns:
title = out["name"].astype("string").str.extract(r",s*([^.]+).", broaden=False).fillna("Unknown").str.strip()
vc = title.value_counts(dropna=False)
maintain = set(vc[vc >= 15].index.tolist())
out["title"] = title.the place(title.isin(maintain), different="Uncommon").astype("string")
else:
out["title"] = "Unknown"
out["segment"] = (
out["sex"].fillna("Unknown").astype("string")
+ " | "
+ out["class"].fillna("Unknown").astype("string")
+ " | "
+ out["age_bucket"].fillna("Unknown").astype("string")
)
for c in out.columns:
if out[c].dtype == bool:
out[c] = out[c].astype("int64")
if out[c].dtype == "object":
out[c] = out[c].astype("string")
return out
df = preprocess_titanic_advanced(df_raw)
print("Prepped form:", df.form)
show(df.head(3))
We deal with superior preprocessing and have engineering to transform the uncooked knowledge into an analysis-ready kind. We create strong, DuckDB-safe options akin to buckets, segments, and engineered categorical alerts that improve downstream exploration. We make sure the dataset is secure, expressive, and appropriate for interactive querying.
def data_quality_report(df):
rows = []
n = len(df)
for c in df.columns:
s = df[c]
miss = int(s.isna().sum())
miss_pct = (miss / n * 100.0) if n else 0.0
nunique = int(s.nunique(dropna=True))
dtype = str(s.dtype)
pattern = s.dropna().head(3).tolist()
rows.append({
"col": c,
"dtype": dtype,
"lacking": miss,
"missing_%": spherical(miss_pct, 2),
"nunique": nunique,
"sample_values": pattern
})
return pd.DataFrame(rows).sort_values(["missing", "nunique"], ascending=[False, False])
dq = data_quality_report(df)
show(dq.head(20))
RANDOM_SEED = 42
MAX_ROWS_FOR_UI = 200_000
df_for_ui = df
if len(df_for_ui) > MAX_ROWS_FOR_UI:
df_for_ui = df_for_ui.pattern(MAX_ROWS_FOR_UI, random_state=RANDOM_SEED).reset_index(drop=True)
agg = (
df.groupby(["segment", "deck", "embarked"], dropna=False)
.agg(
n=("survived", "dimension"),
survival_rate=("survived", "imply"),
avg_fare=("fare", "imply"),
avg_age=("age", "imply"),
)
.reset_index()
)
for c in ["survival_rate", "avg_fare", "avg_age"]:
agg[c] = agg[c].astype("float64")
Path("/content material").mkdir(dad and mom=True, exist_ok=True)
df_for_ui.to_csv("/content material/titanic_prepped_for_ui.csv", index=False)
agg.to_csv("/content material/titanic_agg_segment_deck_embarked.csv", index=False)
We consider knowledge high quality and generate a structured overview of missingness, cardinality, and knowledge sorts. We put together each a row-level dataset and an aggregated cohort-level desk to assist quick comparative evaluation. The twin illustration permits us to discover detailed patterns and high-level tendencies concurrently.
import pygwalker as pyg
SPEC_PATH = Path("/content material/pygwalker_spec_titanic.json")
def load_spec(path):
if path.exists():
attempt:
return json.hundreds(path.read_text())
besides Exception:
return None
return None
def save_spec(path, spec_obj):
attempt:
if isinstance(spec_obj, str):
spec_obj = json.hundreds(spec_obj)
path.write_text(json.dumps(spec_obj, indent=2))
return True
besides Exception:
return False
def launch_pygwalker(df, spec_path):
spec = load_spec(spec_path)
kwargs = {}
if spec is just not None:
kwargs["spec"] = spec
attempt:
walker = pyg.stroll(df, use_kernel_calc=True, **kwargs)
besides TypeError:
walker = pyg.stroll(df, **kwargs) if spec is just not None else pyg.stroll(df)
captured = None
for attr in ["spec", "_spec"]:
if hasattr(walker, attr):
attempt:
captured = getattr(walker, attr)
break
besides Exception:
move
for meth in ["to_spec", "export_spec", "get_spec"]:
if captured is None and hasattr(walker, meth):
attempt:
captured = getattr(walker, meth)()
break
besides Exception:
move
if captured is just not None:
save_spec(spec_path, captured)
return walker
walker_rows = launch_pygwalker(df_for_ui, SPEC_PATH)
walker_agg = pyg.stroll(agg)
We combine PyGWalker to remodel our ready tables into a totally interactive, drag-and-drop analytical interface. We persist the visualization specification in order that dashboard layouts and encodings survive pocket book reruns. It turns the pocket book right into a reusable, BI-style exploration atmosphere.
HTML_PATH = Path("/content material/pygwalker_titanic_dashboard.html")
def export_html_best_effort(df, spec_path, out_path):
spec = load_spec(spec_path)
html = None
attempt:
html = pyg.stroll(df, spec=spec, return_html=True) if spec is just not None else pyg.stroll(df, return_html=True)
besides Exception:
html = None
if html is None:
for fn in ["to_html", "export_html"]:
if hasattr(pyg, fn):
attempt:
f = getattr(pyg, fn)
html = f(df, spec=spec) if spec is just not None else f(df)
break
besides Exception:
proceed
if html is None:
return None
if not isinstance(html, str):
html = str(html)
out_path.write_text(html, encoding="utf-8")
return out_path
export_html_best_effort(df_for_ui, SPEC_PATH, HTML_PATH)
We prolong the workflow by exporting the interactive dashboard as a standalone HTML artifact. We make sure the evaluation could be shared or reviewed with out requiring a Python atmosphere or Colab session. It completes the pipeline from uncooked knowledge to distributable, interactive perception.
In conclusion, we established a strong sample for superior EDA that scales far past the Titanic dataset whereas remaining absolutely notebook-native. We confirmed how cautious preprocessing, kind security, and have design permit PyGWalker to function reliably on complicated knowledge, and the way combining detailed data with aggregated summaries unlocks highly effective analytical workflows. As a substitute of treating visualization as an afterthought, we used it as a first-class interactive layer, permitting us to iterate, validate assumptions, and extract insights in actual time.
Try the Full Codes here. Additionally, be at liberty to comply with us on Twitter and don’t overlook to hitch our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.
