Close Menu
    Facebook X (Twitter) Instagram
    Articles Stock
    • Home
    • Technology
    • AI
    • Pages
      • About us
      • Contact us
      • Disclaimer For Articles Stock
      • Privacy Policy
      • Terms and Conditions
    Facebook X (Twitter) Instagram
    Articles Stock
    AI

    The best way to Design Advanced Deep Studying Tensor Pipelines Utilizing Einops with Imaginative and prescient, Consideration, and Multimodal Examples

    Naveed AhmadBy Naveed Ahmad11/02/2026Updated:11/02/2026No Comments2 Mins Read
    blog banner23 1 9


    part("6) pack unpack")
    B, Cemb = 2, 128
    
    
    class_token = torch.randn(B, 1, Cemb, machine=machine)
    image_tokens = torch.randn(B, 196, Cemb, machine=machine)
    text_tokens = torch.randn(B, 32, Cemb, machine=machine)
    show_shape("class_token", class_token)
    show_shape("image_tokens", image_tokens)
    show_shape("text_tokens", text_tokens)
    
    
    packed, ps = pack([class_token, image_tokens, text_tokens], "b * c")
    show_shape("packed", packed)
    print("packed_shapes (ps):", ps)
    
    
    mixer = nn.Sequential(
       nn.LayerNorm(Cemb),
       nn.Linear(Cemb, 4 * Cemb),
       nn.GELU(),
       nn.Linear(4 * Cemb, Cemb),
    ).to(machine)
    
    
    blended = mixer(packed)
    show_shape("blended", blended)
    
    
    class_out, image_out, text_out = unpack(blended, ps, "b * c")
    show_shape("class_out", class_out)
    show_shape("image_out", image_out)
    show_shape("text_out", text_out)
    assert class_out.form == class_token.form
    assert image_out.form == image_tokens.form
    assert text_out.form == text_tokens.form
    
    
    part("7) layers")
    class PatchEmbed(nn.Module):
       def __init__(self, in_channels=3, emb_dim=192, patch=8):
           tremendous().__init__()
           self.patch = patch
           self.to_patches = Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=patch, p2=patch)
           self.proj = nn.Linear(in_channels * patch * patch, emb_dim)
    
    
       def ahead(self, x):
           x = self.to_patches(x)
           return self.proj(x)
    
    
    class SimpleVisionHead(nn.Module):
       def __init__(self, emb_dim=192, num_classes=10):
           tremendous().__init__()
           self.pool = Scale back("b t c -> b c", discount="imply")
           self.classifier = nn.Linear(emb_dim, num_classes)
    
    
       def ahead(self, tokens):
           x = self.pool(tokens)
           return self.classifier(x)
    
    
    patch_embed = PatchEmbed(in_channels=3, emb_dim=192, patch=8).to(machine)
    head = SimpleVisionHead(emb_dim=192, num_classes=10).to(machine)
    
    
    imgs = torch.randn(4, 3, 32, 32, machine=machine)
    tokens = patch_embed(imgs)
    logits = head(tokens)
    show_shape("tokens", tokens)
    show_shape("logits", logits)
    
    
    part("8) sensible")
    x = torch.randn(2, 32, 16, 16, machine=machine)
    g = 8
    xg = rearrange(x, "b (g cg) h w -> (b g) cg h w", g=g)
    show_shape("x", x)
    show_shape("xg", xg)
    
    
    imply = cut back(xg, "bg cg h w -> bg 1 1 1", "imply")
    var = cut back((xg - imply) ** 2, "bg cg h w -> bg 1 1 1", "imply")
    xg_norm = (xg - imply) / torch.sqrt(var + 1e-5)
    x_norm = rearrange(xg_norm, "(b g) cg h w -> b (g cg) h w", b=2, g=g)
    show_shape("x_norm", x_norm)
    
    
    z = torch.randn(3, 64, 20, 30, machine=machine)
    z_flat = rearrange(z, "b c h w -> b c (h w)")
    z_unflat = rearrange(z_flat, "b c (h w) -> b c h w", h=20, w=30)
    assert (z - z_unflat).abs().max().merchandise() < 1e-6
    show_shape("z_flat", z_flat)
    
    
    part("9) views")
    a = torch.randn(2, 3, 4, 5, machine=machine)
    b = rearrange(a, "b c h w -> b h w c")
    print("a.is_contiguous():", a.is_contiguous())
    print("b.is_contiguous():", b.is_contiguous())
    print("b._base is a:", getattr(b, "_base", None) is a)
    
    
    part("Executed ✅ You now have reusable einops patterns for imaginative and prescient, consideration, and multimodal token packing")



    Source link

    Naveed Ahmad

    Related Posts

    Okay, now precisely half of xAI’s founding crew has left the corporate

    11/02/2026

    Google AI Introduces Natively Adaptive Interfaces (NAI): An Agentic Multimodal Accessibility Framework Constructed on Gemini for Adaptive UI Design

    11/02/2026

    Amazon could launch a market the place media websites can promote their content material to AI corporations

    11/02/2026
    Leave A Reply Cancel Reply

    Categories
    • AI
    Recent Comments
      Facebook X (Twitter) Instagram Pinterest
      © 2026 ThemeSphere. Designed by ThemeSphere.

      Type above and press Enter to search. Press Esc to cancel.