On this tutorial, we stroll by a sophisticated, end-to-end exploration of Polyfactory, specializing in how we are able to generate wealthy, reasonable mock knowledge instantly from Python kind hints. We begin by establishing the atmosphere and progressively construct factories for knowledge lessons, Pydantic fashions, and attrs-based lessons, whereas demonstrating customization, overrides, calculated fields, and the technology of nested objects. As we transfer by every snippet, we present how we are able to management randomness, implement constraints, and mannequin real-world constructions, making this tutorial instantly relevant to testing, prototyping, and data-driven growth workflows. Take a look at the FULL CODES here.
import subprocess
import sys
def install_package(package deal):
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", package])
packages = [
"polyfactory",
"pydantic",
"email-validator",
"faker",
"msgspec",
"attrs"
]
for package deal in packages:
strive:
install_package(package deal)
print(f"✓ Put in {package deal}")
besides Exception as e:
print(f"✗ Failed to put in {package deal}: {e}")
print("n")
print("=" * 80)
print("SECTION 2: Primary Dataclass Factories")
print("=" * 80)
from dataclasses import dataclass
from typing import Record, Optionally available
from datetime import datetime, date
from uuid import UUID
from polyfactory.factories import DataclassFactory
@dataclass
class Handle:
avenue: str
metropolis: str
nation: str
zip_code: str
@dataclass
class Particular person:
id: UUID
title: str
e mail: str
age: int
birth_date: date
is_active: bool
deal with: Handle
phone_numbers: Record[str]
bio: Optionally available[str] = None
class PersonFactory(DataclassFactory[Person]):
go
particular person = PersonFactory.construct()
print(f"Generated Particular person:")
print(f" ID: {particular person.id}")
print(f" Title: {particular person.title}")
print(f" Electronic mail: {particular person.e mail}")
print(f" Age: {particular person.age}")
print(f" Handle: {particular person.deal with.metropolis}, {particular person.deal with.nation}")
print(f" Telephone Numbers: {particular person.phone_numbers[:2]}")
print()
individuals = PersonFactory.batch(5)
print(f"Generated {len(individuals)} individuals:")
for i, p in enumerate(individuals, 1):
print(f" {i}. {p.title} - {p.e mail}")
print("n")
We arrange the atmosphere and guarantee all required dependencies are put in. We additionally introduce the core thought of utilizing Polyfactory to generate mock knowledge from kind hints. By initializing the essential dataclass factories, we set up the muse for all subsequent examples.
print("=" * 80)
print("SECTION 3: Customizing Manufacturing facility Habits")
print("=" * 80)
from faker import Faker
from polyfactory.fields import Use, Ignore
@dataclass
class Worker:
employee_id: str
full_name: str
division: str
wage: float
hire_date: date
is_manager: bool
e mail: str
internal_notes: Optionally available[str] = None
class EmployeeFactory(DataclassFactory[Employee]):
__faker__ = Faker(locale="en_US")
__random_seed__ = 42
@classmethod
def employee_id(cls) -> str:
return f"EMP-{cls.__random__.randint(10000, 99999)}"
@classmethod
def full_name(cls) -> str:
return cls.__faker__.title()
@classmethod
def division(cls) -> str:
departments = ["Engineering", "Marketing", "Sales", "HR", "Finance"]
return cls.__random__.selection(departments)
@classmethod
def wage(cls) -> float:
return spherical(cls.__random__.uniform(50000, 150000), 2)
@classmethod
def e mail(cls) -> str:
return cls.__faker__.company_email()
workers = EmployeeFactory.batch(3)
print("Generated Staff:")
for emp in workers:
print(f" {emp.employee_id}: {emp.full_name}")
print(f" Division: {emp.division}")
print(f" Wage: ${emp.wage:,.2f}")
print(f" Electronic mail: {emp.e mail}")
print()
print()
print("=" * 80)
print("SECTION 4: Subject Constraints and Calculated Fields")
print("=" * 80)
@dataclass
class Product:
product_id: str
title: str
description: str
worth: float
discount_percentage: float
stock_quantity: int
final_price: Optionally available[float] = None
sku: Optionally available[str] = None
class ProductFactory(DataclassFactory[Product]):
@classmethod
def product_id(cls) -> str:
return f"PROD-{cls.__random__.randint(1000, 9999)}"
@classmethod
def title(cls) -> str:
adjectives = ["Premium", "Deluxe", "Classic", "Modern", "Eco"]
nouns = ["Widget", "Gadget", "Device", "Tool", "Appliance"]
return f"{cls.__random__.selection(adjectives)} {cls.__random__.selection(nouns)}"
@classmethod
def worth(cls) -> float:
return spherical(cls.__random__.uniform(10.0, 1000.0), 2)
@classmethod
def discount_percentage(cls) -> float:
return spherical(cls.__random__.uniform(0, 30), 2)
@classmethod
def stock_quantity(cls) -> int:
return cls.__random__.randint(0, 500)
@classmethod
def construct(cls, **kwargs):
occasion = tremendous().construct(**kwargs)
if occasion.final_price is None:
occasion.final_price = spherical(
occasion.worth * (1 - occasion.discount_percentage / 100), 2
)
if occasion.sku is None:
name_part = occasion.title.exchange(" ", "-").higher()[:10]
occasion.sku = f"{occasion.product_id}-{name_part}"
return occasion
merchandise = ProductFactory.batch(3)
print("Generated Merchandise:")
for prod in merchandise:
print(f" {prod.sku}")
print(f" Title: {prod.title}")
print(f" Worth: ${prod.worth:.2f}")
print(f" Low cost: {prod.discount_percentage}%")
print(f" Last Worth: ${prod.final_price:.2f}")
print(f" Inventory: {prod.stock_quantity} items")
print()
print()
We deal with producing easy however reasonable mock knowledge utilizing dataclasses and default Polyfactory conduct. We present rapidly create single situations and batches with out writing any customized logic. It helps us validate how Polyfactory mechanically interprets kind hints to populate nested constructions.
print("=" * 80)
print("SECTION 6: Advanced Nested Buildings")
print("=" * 80)
from enum import Enum
class OrderStatus(str, Enum):
PENDING = "pending"
PROCESSING = "processing"
SHIPPED = "shipped"
DELIVERED = "delivered"
CANCELLED = "cancelled"
@dataclass
class OrderItem:
product_name: str
amount: int
unit_price: float
total_price: Optionally available[float] = None
@dataclass
class ShippingInfo:
provider: str
tracking_number: str
estimated_delivery: date
@dataclass
class Order:
order_id: str
customer_name: str
customer_email: str
standing: OrderStatus
objects: Record[OrderItem]
order_date: datetime
shipping_info: Optionally available[ShippingInfo] = None
total_amount: Optionally available[float] = None
notes: Optionally available[str] = None
class OrderItemFactory(DataclassFactory[OrderItem]):
@classmethod
def product_name(cls) -> str:
merchandise = ["Laptop", "Mouse", "Keyboard", "Monitor", "Headphones",
"Webcam", "USB Cable", "Phone Case", "Charger", "Tablet"]
return cls.__random__.selection(merchandise)
@classmethod
def amount(cls) -> int:
return cls.__random__.randint(1, 5)
@classmethod
def unit_price(cls) -> float:
return spherical(cls.__random__.uniform(5.0, 500.0), 2)
@classmethod
def construct(cls, **kwargs):
occasion = tremendous().construct(**kwargs)
if occasion.total_price is None:
occasion.total_price = spherical(occasion.amount * occasion.unit_price, 2)
return occasion
class ShippingInfoFactory(DataclassFactory[ShippingInfo]):
@classmethod
def provider(cls) -> str:
carriers = ["FedEx", "UPS", "DHL", "USPS"]
return cls.__random__.selection(carriers)
@classmethod
def tracking_number(cls) -> str:
return ''.be a part of(cls.__random__.selections('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ', okay=12))
class OrderFactory(DataclassFactory[Order]):
@classmethod
def order_id(cls) -> str:
return f"ORD-{datetime.now().12 months}-{cls.__random__.randint(100000, 999999)}"
@classmethod
def objects(cls) -> Record[OrderItem]:
return OrderItemFactory.batch(cls.__random__.randint(1, 5))
@classmethod
def construct(cls, **kwargs):
occasion = tremendous().construct(**kwargs)
if occasion.total_amount is None:
occasion.total_amount = spherical(sum(merchandise.total_price for merchandise in occasion.objects), 2)
if occasion.shipping_info is None and occasion.standing in [OrderStatus.SHIPPED, OrderStatus.DELIVERED]:
occasion.shipping_info = ShippingInfoFactory.construct()
return occasion
orders = OrderFactory.batch(2)
print("Generated Orders:")
for order in orders:
print(f"n Order {order.order_id}")
print(f" Buyer: {order.customer_name} ({order.customer_email})")
print(f" Standing: {order.standing.worth}")
print(f" Objects ({len(order.objects)}):")
for merchandise so as.objects:
print(f" - {merchandise.amount}x {merchandise.product_name} @ ${merchandise.unit_price:.2f} = ${merchandise.total_price:.2f}")
print(f" Whole: ${order.total_amount:.2f}")
if order.shipping_info:
print(f" Delivery: {order.shipping_info.provider} - {order.shipping_info.tracking_number}")
print("n")
We construct extra complicated area logic by introducing calculated and dependent fields inside factories. We present how we are able to derive values resembling ultimate costs, totals, and transport particulars after object creation. This permits us to mannequin reasonable enterprise guidelines instantly inside our take a look at knowledge mills.
print("=" * 80)
print("SECTION 7: Attrs Integration")
print("=" * 80)
import attrs
from polyfactory.factories.attrs_factory import AttrsFactory
@attrs.outline
class BlogPost:
title: str
creator: str
content material: str
views: int = 0
likes: int = 0
revealed: bool = False
published_at: Optionally available[datetime] = None
tags: Record[str] = attrs.subject(manufacturing facility=listing)
class BlogPostFactory(AttrsFactory[BlogPost]):
@classmethod
def title(cls) -> str:
templates = [
"10 Tips for {}",
"Understanding {}",
"The Complete Guide to {}",
"Why {} Matters",
"Getting Started with {}"
]
matters = ["Python", "Data Science", "Machine Learning", "Web Development", "DevOps"]
template = cls.__random__.selection(templates)
subject = cls.__random__.selection(matters)
return template.format(subject)
@classmethod
def content material(cls) -> str:
return " ".be a part of(Faker().sentences(nb=cls.__random__.randint(3, 8)))
@classmethod
def views(cls) -> int:
return cls.__random__.randint(0, 10000)
@classmethod
def likes(cls) -> int:
return cls.__random__.randint(0, 1000)
@classmethod
def tags(cls) -> Record[str]:
all_tags = ["python", "tutorial", "beginner", "advanced", "guide",
"tips", "best-practices", "2024"]
return cls.__random__.pattern(all_tags, okay=cls.__random__.randint(2, 5))
posts = BlogPostFactory.batch(3)
print("Generated Weblog Posts:")
for submit in posts:
print(f"n '{submit.title}'")
print(f" Creator: {submit.creator}")
print(f" Views: {submit.views:,} | Likes: {submit.likes:,}")
print(f" Printed: {submit.revealed}")
print(f" Tags: {', '.be a part of(submit.tags)}")
print(f" Preview: {submit.content material[:100]}...")
print("n")
print("=" * 80)
print("SECTION 8: Constructing with Particular Overrides")
print("=" * 80)
custom_person = PersonFactory.construct(
title="Alice Johnson",
age=30,
e mail="[email protected]"
)
print(f"Customized Particular person:")
print(f" Title: {custom_person.title}")
print(f" Age: {custom_person.age}")
print(f" Electronic mail: {custom_person.e mail}")
print(f" ID (auto-generated): {custom_person.id}")
print()
vip_customers = PersonFactory.batch(
3,
bio="VIP Buyer"
)
print("VIP Prospects:")
for buyer in vip_customers:
print(f" {buyer.title}: {buyer.bio}")
print("n")
We prolong Polyfactory utilization to validated Pydantic fashions and attrs-based lessons. We display how we are able to respect subject constraints, validators, and default behaviors whereas nonetheless producing legitimate knowledge at scale. It ensures our mock knowledge stays suitable with actual utility schemas.
print("=" * 80)
print("SECTION 9: Subject-Degree Management with Use and Ignore")
print("=" * 80)
from polyfactory.fields import Use, Ignore
@dataclass
class Configuration:
app_name: str
model: str
debug: bool
created_at: datetime
api_key: str
secret_key: str
class ConfigFactory(DataclassFactory[Configuration]):
app_name = Use(lambda: "MyAwesomeApp")
model = Use(lambda: "1.0.0")
debug = Use(lambda: False)
@classmethod
def api_key(cls) -> str:
return f"api_key_{''.be a part of(cls.__random__.selections('0123456789abcdef', okay=32))}"
@classmethod
def secret_key(cls) -> str:
return f"secret_{''.be a part of(cls.__random__.selections('0123456789abcdef', okay=64))}"
configs = ConfigFactory.batch(2)
print("Generated Configurations:")
for config in configs:
print(f" App: {config.app_name} v{config.model}")
print(f" Debug: {config.debug}")
print(f" API Key: {config.api_key[:20]}...")
print(f" Created: {config.created_at}")
print()
print()
print("=" * 80)
print("SECTION 10: Mannequin Protection Testing")
print("=" * 80)
from pydantic import BaseModel, ConfigDict
from typing import Union
class PaymentMethod(BaseModel):
model_config = ConfigDict(use_enum_values=True)
kind: str
card_number: Optionally available[str] = None
bank_name: Optionally available[str] = None
verified: bool = False
class PaymentMethodFactory(ModelFactory[PaymentMethod]):
__model__ = PaymentMethod
payment_methods = [
PaymentMethodFactory.build(type="card", card_number="4111111111111111"),
PaymentMethodFactory.build(type="bank", bank_name="Chase Bank"),
PaymentMethodFactory.build(verified=True),
]
print("Cost Methodology Protection:")
for i, pm in enumerate(payment_methods, 1):
print(f" {i}. Sort: {pm.kind}")
if pm.card_number:
print(f" Card: {pm.card_number}")
if pm.bank_name:
print(f" Financial institution: {pm.bank_name}")
print(f" Verified: {pm.verified}")
print("n")
print("=" * 80)
print("TUTORIAL SUMMARY")
print("=" * 80)
print("""
This tutorial coated:
1. ✓ Primary Dataclass Factories - Easy mock knowledge technology
2. ✓ Customized Subject Turbines - Controlling particular person subject values
3. ✓ Subject Constraints - Utilizing PostGenerated for calculated fields
4. ✓ Pydantic Integration - Working with validated fashions
5. ✓ Advanced Nested Buildings - Constructing associated objects
6. ✓ Attrs Help - Various to dataclasses
7. ✓ Construct Overrides - Customizing particular situations
8. ✓ Use and Ignore - Express subject management
9. ✓ Protection Testing - Guaranteeing complete take a look at knowledge
Key Takeaways:
- Polyfactory mechanically generates mock knowledge from kind hints
- Customise technology with classmethods and interior decorators
- Helps a number of libraries: dataclasses, Pydantic, attrs, msgspec
- Use PostGenerated for calculated/dependent fields
- Override particular values whereas conserving others random
- Good for testing, growth, and prototyping
For extra data:
- Documentation: https://polyfactory.litestar.dev/
- GitHub: https://github.com/litestar-org/polyfactory
""")
print("=" * 80)
We cowl superior utilization patterns resembling specific overrides, fixed subject values, and protection testing situations. We present how we are able to deliberately assemble edge instances and variant situations for strong testing. This ultimate step ties all the things collectively by demonstrating how Polyfactory helps complete and production-grade take a look at knowledge methods.
In conclusion, we demonstrated how Polyfactory allows us to create complete, versatile take a look at knowledge with minimal boilerplate whereas nonetheless retaining fine-grained management over each subject. We confirmed deal with easy entities, complicated nested constructions, and Pydantic mannequin validation, in addition to specific subject overrides, inside a single, constant factory-based method. General, we discovered that Polyfactory allows us to maneuver sooner and take a look at extra confidently, because it reliably generates reasonable datasets that intently mirror production-like situations with out sacrificing readability or maintainability.
Take a look at the FULL CODES here. Additionally, be at liberty to observe us on Twitter and don’t overlook to hitch our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.
